Peanut Shell-Derived Biochar as a Low-Cost Adsorbent to Extract Cadmium, Chromium, Lead, Copper, and Zinc (Heavy Metals) from Wastewater: Circular Economy Approach
Teddy Ireen Kantoro Mathabatha,
Anthony Njuguna Matheri () and
Mohamed Belaid
Additional contact information
Teddy Ireen Kantoro Mathabatha: University of Johannesburg
Anthony Njuguna Matheri: University of Johannesburg
Mohamed Belaid: University of Johannesburg
Circular Economy and Sustainability, 2023, vol. 3, issue 2, 1045-1064
Abstract:
Abstract The accumulation of heavy metals in water bodies degrades the water quality and availability. Heavy metals are toxic and can be fatal if consumed. Various techniques such as ion-exchange, precipitation, and adsorption have been used to extract heavy metals in wastewater. The process of adsorption will be reviewed in this study since it uses various adsorbents from industrial waste to agricultural waste and is inexpensive. The production of adsorbents from industrial waste produces large amounts of toxins such as greenhouse gases and it is also costly to produce; thus, it was suggested that adsorbents are produce using biomass, which supports both circular economy and sustainability. The most effective biomass adsorbent is activated carbon; however, it has high production costs than biochar. This study will review on synthesis of biochar, its contribution to circular economy, biochar adsorption mechanisms, heavy metals extraction techniques, and peanut shells as an effective adsorbent to extract heavy metals, namely, chromium, cadmium, lead, zinc, and copper and as a low-cost adsorbent. Furthermore, limitations to using peanut shell-derived biochar are identified. Studies were conducted using peanut shells and it was found that even using peanut shell without pyrolysis is effective to remove heavy metals. In one study, raw peanut shells (non-pyrolyzed) were used to extract lead and the peanut shells’ dosages were at 0.5 g, 1.0 g, and 1.5 g and it was found that 74.36%, 74.57%, and 74.05% of lead was extracted, respectively. In other study, the peanut shells were pyrolyzed to produce biochar and used to extract Cr(I II), Cu(II), and Pb(II) and it was found that it extracted 80%, 85%, and 90% of the metal ions, respectively. This shows that biochar adsorbs more heavy metal ions; thus, it is necessary to thermally degrade the biomass before usage. More literature on the usage of peanut shells to extract heavy metals in wastewater are reviewed in this article to further show that peanut shells have potential to be used as an adsorbent.
Keywords: Adsorption; Circular economy; Heavy metals; Low-cost adsorbent; Peanut shells biochar; Wastewater (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s43615-022-00207-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:circec:v:3:y:2023:i:2:d:10.1007_s43615-022-00207-4
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/43615
DOI: 10.1007/s43615-022-00207-4
Access Statistics for this article
More articles in Circular Economy and Sustainability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().