EconPapers    
Economics at your fingertips  
 

Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia

Liu De () and Heping Zuo

Climatic Change, 2012, vol. 115, issue 3, 629-666

Abstract: This paper outlines a new statistical downscaling method based on a stochastic weather generator. The monthly climate projections from global climate models (GCMs) are first downscaled to specific sites using an inverse distance-weighted interpolation method. A bias correction procedure is then applied to the monthly GCM values of each site. Daily climate projections for the site are generated by using a stochastic weather generator, WGEN. For downscaling WGEN parameters, historical climate data from 1889 to 2008 are sorted, in an ascending order, into 6 climate groups. The WGEN parameters are downscaled based on the linear and non-linear relationships derived from the 6 groups of historical climates and future GCM projections. The overall averaged confidence intervals for these significant linear relationships between parameters and climate variables are 0.08 and 0.11 (the range of these parameters are up to a value of 1.0) at the observed mean and maximum values of climate variables, revealing a high confidence in extrapolating parameters for downscaling future climate. An evaluation procedure is set up to ensure that the downscaled daily sequences are consistent with monthly GCM output in terms of monthly means or totals. The performance of this model is evaluated through the comparison between the distributions of measured and downscaled climate data. Kruskall-Wallis rank (K-W) and Siegel-Tukey rank sum dispersion (S-T) tests are used. The results show that the method can reproduce the climate statistics at annual, monthly and daily time scales for both training and validation periods. The method is applied to 1062 sites across New South Wales (NSW) for 9 GCMs and three IPCC SRES emission scenarios, B1, A1B and A2, for the period of 1900–2099. Projected climate changes by 7 GCMs are also analyzed for the A2 emission scenario based on the downscaling results. Copyright Springer Science+Business Media B.V. 2012

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (37)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-012-0464-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:115:y:2012:i:3:p:629-666

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-012-0464-y

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:115:y:2012:i:3:p:629-666