Nuclear energy response in the EMF27 study
Son Kim (),
Kenichi Wada,
Atsushi Kurosawa and
Matthew Roberts
Climatic Change, 2014, vol. 123, issue 3, 443-460
Abstract:
The nuclear energy response for mitigating global climate change across 18 participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0–66 EJ/year and 0–25 % in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90 % capacity factor) and median share of 9 %. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO 2 e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90 % capacity factor) and share of 17 % in 2100. The broad range of nuclear electricity generation (11–214 EJ/year) and shares (2–38 %) in 2100 of the 450 ppm CO 2 e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change. Copyright Springer Science+Business Media Dordrecht 2014
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1098-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:123:y:2014:i:3:p:443-460
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-014-1098-z
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().