EconPapers    
Economics at your fingertips  
 

Oscillatory dynamics do not mask linear trends in the timing of ice breakup for Northern Hemisphere lakes from 1855 to 2004

Sapna Sharma () and John Magnuson

Climatic Change, 2014, vol. 124, issue 4, 835-847

Abstract: Our analyses partition the relative influence of progressive climate change and large-scale climate drivers that can be associated with the Quasi-Biennial Oscillation (QBO), El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), solar sunspot cycle, and multi-decadal oscillations on lake ice breakup dates for thirteen Northern Hemisphere lakes. Oscillatory dynamics explain 26 % of the total variance in the time series compared with 15 % for linear trends, leaving 60 % unexplained and likely attributable, in part, to local weather. Significant oscillatory dynamics include frequencies in 2–3 year periods (9.4 % of the total variance), 3–6 year periods (8.2 %), 10–12 year periods (1.6 %) and various multidecadal periods (0.4–1.3 %). All 13 study lakes, although widely scattered in the Northern Hemisphere, had similar oscillatory dynamics and linear trends, emphasizing that global processes influence lake ice breakup locally. We illustrate that while quasi-periodic dynamics associated with large-scale climate drivers are important, they do not mask the clear evidence for progressive climate change. Copyright Springer Science+Business Media Dordrecht 2014

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1125-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:124:y:2014:i:4:p:835-847

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-014-1125-0

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:124:y:2014:i:4:p:835-847