Non-stationary extreme value analysis in a changing climate
Linyin Cheng,
Amir AghaKouchak (),
Eric Gilleland and
Richard Katz
Climatic Change, 2014, vol. 127, issue 2, 353-369
Abstract:
This paper introduces a framework for estimating stationary and non-stationary return levels, return periods, and risks of climatic extremes using Bayesian inference. This framework is implemented in the Non-stationary Extreme Value Analysis (NEVA) software package, explicitly designed to facilitate analysis of extremes in the geosciences. In a Bayesian approach, NEVA estimates the extreme value parameters with a Differential Evolution Markov Chain (DE-MC) approach for global optimization over the parameter space. NEVA includes posterior probability intervals (uncertainty bounds) of estimated return levels through Bayesian inference, with its inherent advantages in uncertainty quantification. The software presents the results of non-stationary extreme value analysis using various exceedance probability methods. We evaluate both stationary and non-stationary components of the package for a case study consisting of annual temperature maxima for a gridded global temperature dataset. The results show that NEVA can reliably describe extremes and their return levels. Copyright Springer Science+Business Media Dordrecht 2014
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1254-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:127:y:2014:i:2:p:353-369
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-014-1254-5
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().