Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field
Zhaozhi Wang (),
Zhiming Qi (),
Lulin Xue,
Melissa Bukovsky and
Matthew Helmers
Climatic Change, 2015, vol. 129, issue 1, 323-335
Abstract:
The effect of climate change on crop production and nitrate-nitrogen (NO 3 -N) pollution from subsurface drained fields is of a great concern. Using the calibrated and validated RZWQM2 (coupled with CERES-Maize and CROPGRO in DSSAT), the potential effects of climate change and elevated atmospheric CO 2 concentrations (CO 2 ) on tile drainage volume, NO 3 -N losses, and crop production were assessed integrally for the first time for a corn-soybean rotation cropping system near Gilmore City, Iowa. RZWQM2 simulated results under 20-year observed historical weather data (1990–2009) and ambient CO 2 were compared to those under 20-year projected future meteorological data (2045–2064) and elevated CO 2 , with all management practices unchanged. The results showed that, under the future climate, tile drainage, NO 3 -N loss and flow-weighted average NO 3 -N concentration (FWANC) increased by 4.2 cm year −1 (+14.5 %), 11.6 kg N ha −1 year −1 (+33.7 %) and 2.0 mg L −1 (+16.4 %), respectively. Yields increased by 875 kg ha −1 (+28.0 %) for soybean [Glycine max (L.) Merr.] but decreased by 1380 kg ha −1 (−14.7 %) for corn (Zea mays L.). The yield of the C 3 soybean increased mostly due to CO 2 enrichment but increased temperature had negligible effect. However, the yield of C 4 corn decreased largely because of fewer days to physiological maturity due to increased temperature and limited benefit of elevated CO 2 to corn yield under subhumid climate. Relative humidity, short wave radiation and wind speed had small or negligible impacts on FWANC or grain yields. With the predicted trend, this study suggests that to mitigate NO 3 -N pollution from subsurface drained corn-soybean field in Iowa is a more challenging task in the future without changing current management practices. This study also demonstrates the advantage of an agricultural system model in assessing climate change impacts on water quality and crop production. Further investigation on management practice adaptation is needed. Copyright Springer Science+Business Media Dordrecht 2015
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-015-1342-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:129:y:2015:i:1:p:323-335
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-015-1342-1
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().