EconPapers    
Economics at your fingertips  
 

Sensitivity analysis of climate change impacts on dune erosion: case study for the Dutch Holland coast

R. C. Winter () and B. G. Ruessink
Additional contact information
R. C. Winter: Utrecht University
B. G. Ruessink: Utrecht University

Climatic Change, 2017, vol. 141, issue 4, No 7, 685-701

Abstract: Abstract Climate change could have large implications for the management of dune-fringed coasts. Sea level rise and changes in storm wave and surge characteristics could lead to enhanced dune erosion and hence a decrease in safety levels. Here, we use the process-based model XBeach to quantify the impact of sea level rise and changing hydrodynamic boundary conditions on the magnitude of future dune erosion at two locations along the Dutch coast. We find a linear relation between sea level rise and dune erosion volume, the exact linear relation being dependent on the local hydrodynamical boundary conditions. The process driving higher erosion appears to be sea level rise, allowing waves to attack the dune at a higher level. Additional simulations illustrate that a change in the offshore wave angle, potentially produced by changes in storm tracks, could influence the erosion volume with the same order of magnitude as sea level rise. Finally, simulations with different mitigation options (i.e., sand nourishments) illustrate the strong effect of the location of the added sand to the reduction in the dune erosion volume.

Keywords: Dune erosion; XBeach; Sea level rise; Climate change; The Netherlands (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10584-017-1922-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:141:y:2017:i:4:d:10.1007_s10584-017-1922-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-017-1922-3

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:141:y:2017:i:4:d:10.1007_s10584-017-1922-3