Uncertainty representations of mean sea-level change: a telephone game?
Thomas David Pol () and
Jochen Hinkel ()
Additional contact information
Thomas David Pol: Global Climate Forum
Jochen Hinkel: Global Climate Forum
Climatic Change, 2019, vol. 152, issue 3, No 6, 393-411
Abstract:
Abstract For the long-term management of coastal flood risks, investment and policy strategies need to be developed in light of the full range of uncertainties associated with mean sea-level rise (SLR). This, however, remains a challenge due to deep uncertainties involved in SLR assessments, many ways of representing uncertainties and a lack of common terminology for referring to these. To contribute to addressing these limitations, this paper first develops a typology of representations of SLR uncertainty by categorising these at three levels: (i) SLR scenarios versus SLR predictions, (ii) the type of variable that is used to represent SLR uncertainty, and (iii) partial versus complete uncertainty representations. Next, it is analysed how mean SLR uncertainty is represented and how representations are converted within the following three strands of literature: SLR assessments, impact assessments and decision analyses. We find that SLR assessments mostly produce partial or complete precise probabilistic scenarios. The likely ranges in the report of the Intergovernmental Panel on Climate Change are a noteworthy example of partial imprecise probabilistic scenarios. SLR impact assessments and decision analyses mostly use deterministic scenarios. In conversions of uncertainty representations, a range of arbitrary assumptions are made, for example on functional forms of probability distributions and relevant confidence levels. The loss of quality and the loss of information can be reduced by disregarding deterministic and complete precise probabilistic predictions for decisions with time horizons of several decades or centuries and by constructing imprecise probabilistic predictions and using these in approaches for robust decision-making.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-018-2359-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:152:y:2019:i:3:d:10.1007_s10584-018-2359-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-018-2359-z
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().