Increasing risks of apple tree frost damage under climate change
Peter Pfleiderer (),
Inga Menke and
Carl-Friedrich Schleussner
Additional contact information
Peter Pfleiderer: Climate Analytics
Inga Menke: Climate Analytics
Carl-Friedrich Schleussner: Climate Analytics
Climatic Change, 2019, vol. 157, issue 3, No 11, 515-525
Abstract:
Abstract Anthropogenic climate change is affecting agriculture and crop production. The responses of horticultural and agricultural systems to changing climatic conditions can be non-linear and at times counter-intuitive. Depending on the characteristics of the system, the actual impact can arise as a result of a combination of climate hazards or compound events. Here, we show that compound events can lead to increased risk of frost damage for apple fruit trees in Germany in a 2 °C warmer world of up to 10% relative to present day. Although the absolute number of frost days is declining, warmer winters also lead to earlier blossom of fruit trees, which in turn can lead to regionally dependent increased risks of the occurrence of frost days after apple blossom. In southern Germany, warmer winters may also lead to an increase in years in which apple yield is negatively affected by a lack of sufficient amount of cold days to trigger the seasonal response of the trees. Our results show how cropping system responses to seasonal climate can lead to unexpected effects of increased risk of frost damage as a result of warmer winters. An improved understanding of ecosystem responses to changes in climate signals is important to fully assess the impacts of climate change.
Keywords: Apple tree; Climate change; Weather extremes; Compound weather events (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-019-02570-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:157:y:2019:i:3:d:10.1007_s10584-019-02570-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-019-02570-y
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().