Inter-model agreement on projected shifts in California hydroclimate characteristics critical to water management
Geeta G. Persad (),
Daniel L. Swain,
Claire Kouba and
J. Pablo Ortiz-Partida
Additional contact information
Geeta G. Persad: Union of Concerned Scientists
Daniel L. Swain: University of California, Los Angeles
Claire Kouba: University of California, Davis
J. Pablo Ortiz-Partida: Union of Concerned Scientists
Climatic Change, 2020, vol. 162, issue 3, No 29, 1493-1513
Abstract:
Abstract Shifts away from the historical hydroclimate in populated regions can have dire consequences for water management. Regions like the state of California—where highly engineered, geographically interconnected, and inflexible water management systems are predicated on particular spatiotemporal patterns of water availability—are particularly vulnerable to hydroclimate shifts. However, much of the analysis of hydroclimate sensitivity to anthropogenic climate change has focused on gross metrics like annual mean precipitation, which is highly uncertain at the regional scale. This perceived uncertainty has deterred adaptation investments and quantitative integration of climate projection data into regional water management. Here, we assess projected future shifts in the state of California in a range of hydroclimate metrics critical to water management, using data from 10 statistically downscaled global climate model and two emissions scenarios currently used by the state. We find substantial inter-model agreement under both emissions scenarios—and > 80% inter-model agreement under the more severe climate change scenario—across metrics that collectively point toward an increasingly volatile, temporally concentrated, and extreme precipitation future for the state. We show, via hydrologic and operations modeling, that accounting for shifts in these more nuanced metrics reduces the projected reliability and sustainability of current water management practices to a greater degree than would be inferred from changes in total annual precipitation alone. These results highlight both the viability and critical importance of incorporating climate change projections quantitatively into water management decisions in California and other regions vulnerable to hydroclimate shifts, and underscore the need to develop integrated climate-hydrologic-operations models and decision-making protocols capable of accounting for all projected hydroclimate shifts.
Keywords: Climate change; Water; California; Hydroclimate; Climate models; Downscaling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10584-020-02882-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:162:y:2020:i:3:d:10.1007_s10584-020-02882-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-020-02882-4
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().