Designing a statistical procedure for monitoring global carbon dioxide emissions
Mikkel Bennedsen ()
Additional contact information
Mikkel Bennedsen: Aarhus University
Climatic Change, 2021, vol. 166, issue 3, No 6, 19 pages
Abstract:
Abstract Following the Paris Agreement of 2015, most countries have agreed to reduce their carbon dioxide (CO2) emissions according to individually set Nationally Determined Contributions. However, national CO2 emissions are reported by individual countries and cannot be directly measured or verified by third parties. Inherent weaknesses in the reporting methodology may misrepresent, typically an under-reporting of, the total national emissions. This paper applies the theory of sequential testing to design a statistical monitoring procedure that can be used to detect systematic under-reportings of CO2 emissions. Using simulations, we investigate how the proposed sequential testing procedure can be expected to work in practice. We find that, if emissions are reported faithfully, the test is correctly sized, while, if emissions are under-reported, detection time can be sufficiently fast to help inform the 5 yearly global “stocktake” of the Paris Agreement. We recommend the monitoring procedure be applied going forward as part of a larger portfolio of methods designed to verify future global CO2 emissions.
Keywords: CO2 emissions; Paris Agreement; Global Carbon Budget; Sequential testing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10584-021-03123-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:166:y:2021:i:3:d:10.1007_s10584-021-03123-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-021-03123-y
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().