How might climate change affect river flows across West Africa?
Ponnambalam Rameshwaran (),
Victoria A. Bell,
Helen N. Davies and
Alison L. Kay
Additional contact information
Ponnambalam Rameshwaran: UK Centre for Ecology & Hydrology
Victoria A. Bell: UK Centre for Ecology & Hydrology
Helen N. Davies: UK Centre for Ecology & Hydrology
Alison L. Kay: UK Centre for Ecology & Hydrology
Climatic Change, 2021, vol. 169, issue 3, No 3, 27 pages
Abstract:
Abstract West Africa and its semi-arid Sahelian region are one of the world’s most vulnerable regions to climate change with a history of extreme climate variability. There is still considerable uncertainty as to how projected climate change will affect precipitation at local and regional scales and the consequent impact on river flows and water resources across West Africa. Here, we aim to address this uncertainty by configuring a regional-scale hydrological model to West Africa. The model (hydrological modelling framework for West Africa—HMF-WA) simulates spatially consistent river flows on a 0.1° × 0.1° grid (approximately 10 km × 10 km) continuously across the whole domain and includes estimates of anthropogenic water use, wetland inundation, and local hydrological features such as endorheic regions. Regional-scale hydrological simulations driven by observed weather data are assessed against observed flows before undertaking an analysis of the impact of projected future climate scenarios from the CMIP5 on river flows up to the end of the twenty-first century. The results indicate that projected future changes in river flows are highly spatially variable across West Africa, particularly across the Sahelian region where the predicted changes are more pronounced. The study shows that median peak flows are projected to decrease by 23% in the west (e.g. Senegal) and increase by 80% in the eastern region (e.g. Chad) by the 2050s. The projected reductions in river flows in western Sahel lead to future droughts and water shortages more likely, while in the eastern Sahel, projected increases lead to future frequent floods.
Keywords: Climate change; CMIP5; Hydrological modelling; River flow; Sahel; West Africa (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-021-03256-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:169:y:2021:i:3:d:10.1007_s10584-021-03256-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-021-03256-0
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().