The contribution of bioenergy to the decarbonization of transport: a multi-model assessment
Florian Leblanc (),
Ruben Bibas,
Silvana Mima,
Matteo Muratori,
Shogo Sakamoto,
Fuminori Sano,
Nico Bauer,
Vassilis Daioglou,
Shinichiro Fujimori,
Matthew J. Gidden,
Estsushi Kato,
Steven K. Rose,
Junichi Tsutsui,
Detlef P. Vuuren,
John Weyant and
Marshall Wise
Additional contact information
Florian Leblanc: International Research Center On the Environment and Development (CIRED)
Ruben Bibas: International Research Center On the Environment and Development (CIRED)
Silvana Mima: Univ. Grenoble Alpes, CNRS, INRAE, Grenoble INP
Matteo Muratori: National Renewable Energy Laboratory (NREL)
Shogo Sakamoto: Central Research Institute of Electric Power Industry
Fuminori Sano: Research Institute of Innovative Technology for the Earth
Nico Bauer: Potsdam Institute for Climate Impact Research (PIK)
Vassilis Daioglou: Utrecht University
Shinichiro Fujimori: Kyoto University
Matthew J. Gidden: Climate Analytics
Estsushi Kato: Institute of Applied Energy (IAE)
Steven K. Rose: Electric Power Research Institute (EPRI)
Junichi Tsutsui: Central Research Institute of Electric Power Industry
Detlef P. Vuuren: Utrecht University
John Weyant: Stanford University
Marshall Wise: Pacific Northwest National Laboratory and the University of Maryland
Climatic Change, 2022, vol. 170, issue 3, No 3, 21 pages
Abstract:
Abstract The expected growth in the demand for passenger and freight services exacerbates the challenges of reducing transport GHG emissions, especially as commercial low-carbon alternatives to petroleum fuels are limited for shipping, air and long-distance road travel. Biofuels can offer a pathway to significantly reduce emissions from these sectors, as they can easily substitute for conventional liquid fuels in internal combustion engines. In this paper, we assess the potential of bioenergy to reduce transport GHG emissions through an analysis leveraging various integrated assessment models and scenarios, as part of the 33rd Energy Modeling Forum study (EMF-33). We find that bioenergy can contribute a significant, albeit not dominant, proportion of energy supply to the future transport sector: in scenarios aiming to keep the temperature increase below 2 °C by the end of the twenty-first century, models project that in 2100 bioenergy can provide on average 42 EJ/yr (ranging from 5 to 85 EJ/yr) for transport (compared to 3.7 EJ in 2018), mainly through lignocellulosic fuels. This makes up 9–62% of final transport energy use. Only a small amount of bioenergy is projected to be used in transport through electricity and hydrogen pathways, with a larger role for biofuels in road passenger transport than in freight. The association of carbon capture and storage (CCS) with bioenergy technologies (BECCS) is a key determinant in the role of biofuels in transport, because of the competition for biomass feedstock to provide other final energy carriers along with carbon removal. Among models that consider CCS in the biofuel conversion process the average market share of biofuels is 21% in 2100 (ranging from 2 to 44%), compared to 10% (0–30%) for models that do not. Cumulative direct emissions from the transport sector account for half of the emission budget (from 306 to 776 out of 1,000 GtCO2). However, the carbon intensity of transport decreases as much as other energy sectors in 2100 when accounting for process emissions, including carbon removal from BECCS. Lignocellulosic fuels become more attractive for transport decarbonization if BECCS is not feasible for any energy sectors. Since global transport service demand increases and biomass supply is limited, its allocation to and within the transport sector is uncertain and sensitive to assumptions about political as well as technological and socioeconomic factors.
Keywords: Bioenergy; Transport sector; Lignocellulosic fuels; Climate mitigation; Integrated Assessment Models (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-021-03245-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:170:y:2022:i:3:d:10.1007_s10584-021-03245-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-021-03245-3
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().