When the fraction of attributable risk does not inform the impact associated with anthropogenic climate change
Patrick T. Brown ()
Additional contact information
Patrick T. Brown: The Breakthrough Institute
Climatic Change, 2023, vol. 176, issue 8, No 17, 11 pages
Abstract:
Abstract Weather and climate phenomena have outsized impacts on society when they are particularly extreme. Extreme Event Attribution (EEA) seeks to quantify the extent to which extreme weather and climate phenomena are the result of anthropogenic climate change (ACC), and thus it has implications for many pertinent climate change discussions, including those on potential legal claims of loss and damages and calculations of the social cost of carbon. The Fraction of Attributable Risk (FAR) is one metric that is used to quantify the proportion of an extreme weather or climate “event” associated with ACC. The FAR is typically applied to changes in the likelihood of exceeding some geophysical value chosen, post hoc, to represent the “event” (e.g., i.e., rainfall amounts, flood depths, drought measures, temperature values, etc.). The FAR has further been used to estimate the fraction of observed impacts (e.g., lives lost or economic damage) that can be associated with ACC by multiplying realized impacts by the FAR (IFAR = Impact×FAR). Here, we illustrate with a few stylized examples that this IFAR calculation only produces reliably useful results when the weather or climate phenomena in question can be easily conceived of as a discrete binary “event” (i.e., the entirety of the event either occurs or it does not). We show that the IFAR calculation can produce misleading results when the weather or climate phenomena in question are on a continuum, and ACC can be thought of as altering the intensity of the geophysical value that is used in the eventhood definition. Specifically, we show that the IFAR calculation inflates the impacts associated with ACC in these circumstances because it inaccurately assumes that there would have been zero impact had the geophysical value chosen to define eventhood not been exceeded. We illustrate that for weather and climate phenomena on a continuum (e.g., floods, droughts, temperatures, etc.), a clearer way of conceptualizing the impacts associated with ACC is to compare the expected value of the impact between the ACC and preindustrial conditions across the full continuum.
Keywords: Extreme event attribution; Climate change impacts; Damage function; Social cost of carbon (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-023-03591-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:176:y:2023:i:8:d:10.1007_s10584-023-03591-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-023-03591-4
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().