A topological framework to explore longitudinal social networks
Shahadat Uddin (),
Arif Khan (),
Liaquat Hossain (),
Mahendra Piraveenan () and
Sven Carlsson ()
Additional contact information
Shahadat Uddin: The University of Sydney
Arif Khan: The University of Sydney
Liaquat Hossain: The University of Hong Kong
Mahendra Piraveenan: The University of Sydney
Sven Carlsson: Lund University
Computational and Mathematical Organization Theory, 2015, vol. 21, issue 1, No 3, 48-68
Abstract:
Abstract Longitudinal networks evolve over time through the creation and/or deletion of links among a set of actors (e.g., individuals or organizations). A longitudinal network can be viewed as a single static network (i.e., structure of network is fixed) that aggregates all the edges observed over some time period or as a series of static networks observed in different point of time over the entire network observation period (i.e., structure of network is changing over time). The understanding of the underlying structural changes of longitudinal networks and contributions of individual actors to these changes enable researchers to investigate different structural properties of such networks. By following a topological approach (i.e., static topology and dynamic topology), this paper first proposes a framework to analyze longitudinal social networks. In static topology, social networks analysis (SNA) methods are applied to the aggregated network of entire observation period. Smaller segments of network data (i.e., short-interval network) that are accumulated in less time compared to the entire network observation period are used in the dynamic topology for analysis purposes. Based on this framework, this study then conducts topological analysis of two longitudinal networks to explore over time actor-level dynamics during different phases of these two networks. The proposed topological framework can be utilized to explore structural vulnerabilities and evolutionary trend of various longitudinal social networks (e.g., disease spread network and computer virus network). This will eventually lead to better authorization and control over such networks. For network science researchers, this framework will bring new research opportunities to enhance our present knowledge about different aspects (e.g., network disintegration and contribution of individual actor’s to network evolution) of longitudinal social networks.
Keywords: Longitudinal social networks; Topological analysis; Static topology and dynamic topology (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10588-014-9176-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comaot:v:21:y:2015:i:1:d:10.1007_s10588-014-9176-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10588
DOI: 10.1007/s10588-014-9176-3
Access Statistics for this article
Computational and Mathematical Organization Theory is currently edited by Terrill Frantz and Kathleen Carley
More articles in Computational and Mathematical Organization Theory from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().