EconPapers    
Economics at your fingertips  
 

Multivariate approximations to portfolio return distribution

Andrés Mora-Valencia, Trino Ñíguez Grau and Javier Perote

Computational and Mathematical Organization Theory, 2017, vol. 23, issue 3, No 2, 347-361

Abstract: Abstract This article proposes a three-step procedure to estimate portfolio return distributions under the multivariate Gram–Charlier (MGC) distribution. The method combines quasi maximum likelihood (QML) estimation for conditional means and variances and the method of moments (MM) estimation for the rest of the density parameters, including the correlation coefficients. The procedure involves consistent estimates even under density misspecification and solves the so-called ‘curse of dimensionality’ of multivariate modelling. Furthermore, the use of a MGC distribution represents a flexible and general approximation to the true distribution of portfolio returns and accounts for all its empirical regularities. An application of such procedure is performed for a portfolio composed of three European indices as an illustration. The MM estimation of the MGC (MGC-MM) is compared with the traditional maximum likelihood of both the MGC and multivariate Student’s t (benchmark) densities. A simulation on Value-at-Risk (VaR) performance for an equally weighted portfolio at 1 and 5 % confidence indicates that the MGC-MM method provides reasonable approximations to the true empirical VaR. Therefore, the procedure seems to be a useful tool for risk managers and practitioners.

Keywords: European stock indices; Gram–Charlier expansion; Method of moments; Portfolio returns (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10588-016-9231-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:comaot:v:23:y:2017:i:3:d:10.1007_s10588-016-9231-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10588

DOI: 10.1007/s10588-016-9231-3

Access Statistics for this article

Computational and Mathematical Organization Theory is currently edited by Terrill Frantz and Kathleen Carley

More articles in Computational and Mathematical Organization Theory from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:spr:comaot:v:23:y:2017:i:3:d:10.1007_s10588-016-9231-3