A comparison of Bayesian, Hazard, and Mixed Logit model of bankruptcy prediction
Samir Trabelsi (),
Roc He,
Lawrence He and
Martin Kusy
Computational Management Science, 2015, vol. 12, issue 1, 97 pages
Abstract:
The purpose of this study is to examine the impact of the choice of cut-off points, sampling procedures, and business cycles on the forecasting accuracy of bankruptcy prediction models. A misclassification can result in an erroneous prediction resulting in prohibitive costs to firms, investors, and the economy. A salient feature of our study is that our analysis includes both parametric and nonparametric bankruptcy prediction models. A sample of firms from the Bankruptcy Research Database in the U.S. is used to evaluate the relative performance of the three most commonly used bankruptcy prediction models: Bayesian, Hazard, and Mixed Logit. Our results indicate that the choice of the cut-off point and sampling procedures affect the rankings of the three models. We show that the empirical cut-off point estimated from the training sample result in the lowest misclassification costs for all three models. When tests are conducted using randomly selected samples, and all specifications of type I costs over type II costs are taken into account, the Mixed Logit model performs slightly better than the Bayesian model and much better than the Hazard model. However, when tests are conducted across business-cycle samples, the Bayesian model has the best performance and much better predictive power in recent business cycles. This study extends recent research comparing the performance of bankruptcy prediction models by identifying under what conditions a model performs better. It also allays the concerns for a range of users groups, including auditors, shareholders, employees, suppliers, rating agencies, and creditors’ with respect to assessing corporate failure risk. Copyright © Her Majesty the Queen in Right of Canada 2015
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10287-013-0200-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:12:y:2015:i:1:p:81-97
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-013-0200-8
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().