Solution sensitivity-based scenario reduction for stochastic unit commitment
Yonghan Feng () and
Sarah Ryan ()
Computational Management Science, 2016, vol. 13, issue 1, 29-62
Abstract:
A two-stage stochastic program is formulated for day-ahead commitment of thermal generating units to minimize total expected cost considering uncertainties in the day-ahead load and the availability of variable generation resources. Commitments of thermal units in the stochastic reliability unit commitment are viewed as first-stage decisions, and dispatch is relegated to the second stage. It is challenging to solve such a stochastic program if many scenarios are incorporated. A heuristic scenario reduction method termed forward selection in recourse clusters (FSRC), which selects scenarios based on their cost and reliability impacts, is presented to alleviate the computational burden. In instances down-sampled from data for an Independent System Operator in the US, FSRC results in more reliable commitment schedules having similar costs, compared to those from a scenario reduction method based on probability metrics. Moreover, in a rolling horizon study, FSRC preserves solution quality even if the reduction is substantial. Copyright Springer-Verlag Berlin Heidelberg 2016
Keywords: Stochastic programming; Scenario reduction; Unit commitment; Variable generation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10287-014-0220-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:13:y:2016:i:1:p:29-62
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-014-0220-z
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().