Quality evaluation of scenario-tree generation methods for solving stochastic programming problems
Julien Keutchayan (),
Michel Gendreau and
Antoine Saucier
Additional contact information
Julien Keutchayan: École Polytechnique de Montréal
Michel Gendreau: École Polytechnique de Montréal
Antoine Saucier: École Polytechnique de Montréal
Computational Management Science, 2017, vol. 14, issue 3, No 3, 333-365
Abstract:
Abstract This paper addresses the generation of scenario trees to solve stochastic programming problems that have a large number of possible values for the random parameters (possibly infinitely many). For the sake of the computational efficiency, the scenario trees must include only a finite (rather small) number of scenarios, therefore, they provide decisions only for some values of the random parameters. To overcome the resulting loss of information, we propose to introduce an extension procedure. It is a systematic approach to interpolate and extrapolate the scenario-tree decisions to obtain a decision policy that can be implemented for any value of the random parameters at little computational cost. To assess the quality of the scenario-tree generation method and the extension procedure (STGM-EP), we introduce three generic quality parameters that focus on the quality of the decisions. We use these quality parameters to develop a framework that will help the decision-maker to select the most suitable STGM-EP for a given stochastic programming problem. We perform numerical experiments on two case studies. The quality parameters are used to compare three scenario-tree generation methods and three extension procedures (hence nine couples STGM-EP). We show that it is possible to single out the best couple in both problems, which provides decisions close to optimality at little computational cost.
Keywords: Stochastic programming; Scenario tree; Decision policy; Out-of-sample evaluation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10287-017-0279-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:14:y:2017:i:3:d:10.1007_s10287-017-0279-4
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-017-0279-4
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().