An approximate dynamic programming framework for modeling global climate policy under decision-dependent uncertainty
Mort Webster (),
Nidhi Santen () and
Panos Parpas ()
Computational Management Science, 2012, vol. 9, issue 3, 339-362
Abstract:
Analyses of global climate policy as a sequential decision under uncertainty have been severely restricted by dimensionality and computational burdens. Therefore, they have limited the number of decision stages, discrete actions, or number and type of uncertainties considered. In particular, two common simplifications are the use of two-stage models to approximate a multi-stage problem and exogenous formulations for inherently endogenous or decision-dependent uncertainties (in which the shock at time t+1 depends on the decision made at time t). In this paper, we present a stochastic dynamic programming formulation of the Dynamic Integrated Model of Climate and the Economy (DICE), and the application of approximate dynamic programming techniques to numerically solve for the optimal policy under uncertain and decision-dependent technological change in a multi-stage setting. We compare numerical results using two alternative value function approximation approaches, one parametric and one non-parametric. We show that increasing the variance of a symmetric mean-preserving uncertainty in abatement costs leads to higher optimal first-stage emission controls, but the effect is negligible when the uncertainty is exogenous. In contrast, the impact of decision-dependent cost uncertainty, a crude approximation of technology R&D, on optimal control is much larger, leading to higher control rates (lower emissions). Further, we demonstrate that the magnitude of this effect grows with the number of decision stages represented, suggesting that for decision-dependent phenomena, the conventional two-stage approximation will lead to an underestimate of the effect of uncertainty. Copyright Springer-Verlag 2012
Keywords: Climate policy analysis; Approximate dynamic programming; Decision dependent uncertainty; Stochastic dynamic programming; Endogenous uncertainty (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10287-012-0147-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:9:y:2012:i:3:p:339-362
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-012-0147-1
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().