Ranking ranks: a ranking algorithm for bootstrapping from the empirical copula
Thomas Blumentritt () and
Oliver Grothe ()
Computational Statistics, 2013, vol. 28, issue 2, 455-462
Abstract:
Nonparametric copula models are based on observations whose distributions are generally unknown. Estimation of these copula models is based on pseudo-observations consisting of the ranked data. To determine distributional properties (e.g., the variance) of the models and their estimators, resampling methods such as bootstrapping are involved. These methods require drawing samples with replacement from the ranked data. The newly generated samples have to be reranked and existing ties have to be solved by mid-ranks. Since a large number of samples has to be generated in order to attain a suitable accuracy of the estimate, the speed of the algorithm for reranking the samples highly affects the overall computation time. However, commonly used ranking procedures are computationally expensive and their running time is of order O(n* log(n*) + n*). We discuss a faster, more feasible approach using the specific copula setting with a running time that is only of order O(n + n*), where n denotes the sample size and n* the size of the bootstrap sample. In a simulation study, the algorithm performs up to 9 times faster than Matlab’s tiedrank.m-procedure. Copyright Springer-Verlag 2013
Keywords: Resampling; Ties; Mid-ranks; Computing time; Nonparametric copula estimation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0310-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:2:p:455-462
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-012-0310-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().