An accept-reject algorithm for the positive multivariate normal distribution
Carsten Botts ()
Computational Statistics, 2013, vol. 28, issue 4, 1749-1773
Abstract:
The need to simulate from a positive multivariate normal distribution arises in several settings, specifically in Bayesian analysis. A variety of algorithms can be used to sample from this distribution, but most of these algorithms involve Gibbs sampling. Since the sample is generated from a Markov chain, the user has to account for the fact that sequential draws in the sample depend on one another and that the sample generated only follows a positive multivariate normal distribution asymptotically. The user would not have to account for such issues if the sample generated was i.i.d. In this paper, an accept-reject algorithm is introduced in which variates from a positive multivariate normal distribution are proposed from a multivariate skew-normal distribution. This new algorithm generates an i.i.d. sample and is shown, under certain conditions, to be very efficient. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Skewed normal distribution; Gibbs sampling; Principal components (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-012-0377-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:4:p:1749-1773
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-012-0377-2
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().