Estimating standard errors in regular vine copula models
Jakob Stöber () and
Ulf Schepsmeier
Computational Statistics, 2013, vol. 28, issue 6, 2679-2707
Abstract:
We describe a new algorithm for the computation of the score function and observed information in regular vine (R-vine) copula models. R-vine copulas are constructed hierarchically from bivariate copulas as building blocks only, and the algorithm exploits this hierarchical nature for subsequent computation of log-likelihood derivatives. This allows to routinely estimate standard errors of parameter estimates, and overcomes reliability and accuracy issues associated with numerical differentiation in multidimensional models. Results obtained using the proposed methods are discussed in the context of the asymptotic efficiency of different estimation methods and of an application to exchange rate data. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Copula; Exchange rates; R-vine; Standard errors (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0423-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:6:p:2679-2707
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-013-0423-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().