On testing the log-gamma distribution hypothesis by bootstrap
Eduardo Gutiérrez González (),
José Villaseñor Alva,
Olga Panteleeva and
Humberto Vaquera Huerta
Computational Statistics, 2013, vol. 28, issue 6, 2776 pages
Abstract:
In this paper we propose two bootstrap goodness of fit tests for the log-gamma distribution with three parameters, location, scale and shape. These tests are built using the properties of this distribution family and are based on the sample correlation coefficient which has the property of invariance with respect to location and scale transformations. Two estimators are proposed for the shape parameter and show that both are asymptotically unbiased and consistent in mean-squared error. The test size and power is estimated by simulation. The power of the two proposed tests against several alternative distributions is compared to that of the Kolmogorov-Smirnov, Anderson-Darling, and chi-square tests. Finally, an application to data from a production process of carbon fibers is presented. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Shape parameter; Sample correlation coefficient; Location-scale invariant statistic; Goodness of fit test; Parametric bootstrap (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0427-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:28:y:2013:i:6:p:2761-2776
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-013-0427-4
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().