EconPapers    
Economics at your fingertips  
 

Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas

Göran Kauermann () and Renate Meyer

Computational Statistics, 2014, vol. 29, issue 1, 283-306

Abstract: This paper proposes finite mixtures of different Archimedean copula families as a flexible tool for modelling the dependence structure in multivariate data. A novel approach to estimating the parameters in this mixture model is presented by maximizing the penalized marginal likelihood via iterative quadratic programming. The motivation for the penalized marginal likelihood stems from an underlying Bayesian model that imposes a prior distribution on the parameter of each Archimedean copula family. An approximative marginal likelihood is obtained by a classical quadrature discretization of the integral w.r.t. each family-specific prior distribution, thus yielding a finite mixture model. Family-specific smoothness penalties are added and the penalized marginal likelihood is maximized using an iterative quadratic programming routine. For comparison purposes, we also present a fully Bayesian approach via simulation-based posterior computation. The performance of the novel estimation approach is evaluated by simulations and two examples involving the modelling of the interdependence of exchange rates and of wind speed measurements, respectively. For these examples, penalized marginal likelihood estimates are compared to the corresponding Bayesian estimates. Copyright Springer-Verlag Berlin Heidelberg 2014

Keywords: Archimedean copula; Finite mixture model; Penalized marginal likelihood; Markov Chain Monte Carlo; Quadratic programming (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0454-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:29:y:2014:i:1:p:283-306

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-013-0454-1

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:29:y:2014:i:1:p:283-306