EconPapers    
Economics at your fingertips  
 

Phase and multifractality analyses of random price time series by finite-range interacting biased voter system

Hongli Niu and Jun Wang ()

Computational Statistics, 2014, vol. 29, issue 5, 1045-1063

Abstract: A random financial price process which is developed by mechanisms of finite-range interacting biased voter model is considered in the present paper. Voter model is one of statistical physics systems as well as a continuous time Markov process, which originally represents a voter’s attitude on a particular topic, namely, voters reconsider their opinions at times distributed according to independent exponential random variables. The empirical mode decomposition method is employed to analyze the behaviors of logarithmic returns for the simulation data of the model and the two real market indexes, Shanghai Composite Index and Deutscher Aktien Index. The multifractal characteristics of the original returns and first 3 intrinsic mode functions (IMFs) after empirical mode decomposition are explored by the multifractal detrended function analysis. The instantaneous phase, amplitude probability distribution of first 4 IMFs, and the multifractal properties of instantaneous amplitude are investigated. Copyright Springer-Verlag Berlin Heidelberg 2014

Keywords: Statistical analysis; Interacting biased voter model; Financial price process; Phase analysis; Multifractality; Empirical mode decomposition (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-014-0479-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:29:y:2014:i:5:p:1045-1063

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-014-0479-0

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:29:y:2014:i:5:p:1045-1063