Estimating cell probabilities in contingency tables with constraints on marginals/conditionals by geometric programming with applications
Xinlei Wang (),
Johan Lim (),
Seung-Jean Kim and
Kyu Hahn
Computational Statistics, 2015, vol. 30, issue 1, 107-129
Abstract:
Contingency tables are often used to display the multivariate frequency distribution of variables of interest. Under the common multinomial assumption, the first step of contingency table analysis is to estimate cell probabilities. It is well known that the unconstrained maximum likelihood estimator (MLE) is given by cell counts divided by the total number of observations. However, in the presence of (complex) constraints on the unknown cell probabilities or their functions, the MLE or other types of estimators may often have no closed form and have to be obtained numerically. In this paper, we focus on finding the MLE of cell probabilities in contingency tables under two common types of constraints: known marginals and ordered marginals/conditionals, and propose a novel approach based on geometric programming. We present two important applications that illustrate the usefulness of our approach via comparison with existing methods. Further, we show that our GP-based approach is flexible, readily implementable, effort-saving and can provide a unified framework for various types of constrained estimation of cell probabilities in contingency tables. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: Known marginals; Ordered conditionals; Ordered marginals; Judgement post-stratification; Matlab; Monomial; Multinomial distribution; Posynomial; Stochastic ordering (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-014-0525-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:30:y:2015:i:1:p:107-129
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-014-0525-y
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().