Using visual statistical inference to better understand random class separations in high dimension, low sample size data
Niladri Roy Chowdhury (),
Dianne Cook (),
Heike Hofmann (),
Mahbubul Majumder (),
Eun-Kyung Lee () and
Amy Toth ()
Computational Statistics, 2015, vol. 30, issue 2, 293-316
Abstract:
Statistical graphics play an important role in exploratory data analysis, model checking and diagnosis. With high dimensional data, this often means plotting low-dimensional projections, for example, in classification tasks projection pursuit is used to find low-dimensional projections that reveal differences between labelled groups. In many contemporary data sets the number of observations is relatively small compared to the number of variables, which is known as a high dimension low sample size (HDLSS) problem. This paper explores the use of visual inference on understanding low-dimensional pictures of HDLSS data. Visual inference helps to quantify the significance of findings made from graphics. This approach may be helpful to broaden the understanding of issues related to HDLSS data in the data analysis community. Methods are illustrated using data from a published paper, which erroneously found real separation in microarray data, and with a simulation study conducted using Amazon’s Mechanical Turk. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: Statistical graphics; Lineup; Visualization; Projection pursuit; Data mining (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-014-0534-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:30:y:2015:i:2:p:293-316
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-014-0534-x
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().