A partitioned Single Functional Index Model
Aldo Goia () and
Philippe Vieu ()
Computational Statistics, 2015, vol. 30, issue 3, 673-692
Abstract:
Given a functional regression model with scalar response, the aim is to present a methodology in order to approximate in a semi-parametric way the unknown regression operator through a single index approach, but taking possible structural changes into account. Our paper presents this methodology and illustrates its behaviour both on simulated and real curves datasets. It appears, from an example of interest in spectrometry, that the method provides a nice exploratory tool both for analyzing structural changes in the spectrum and for visualizing the most informative directions, still keeping good predictive power. Even if the main objective of this work is to discuss applied issues of the method, asymptotic behaviour is shortly described. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: Functional predictor; Single Index Model; Additive models; Structural points; Spectrometric data (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-014-0530-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:30:y:2015:i:3:p:673-692
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-014-0530-1
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().