Sample selection models for count data in R
Karol Wyszynski () and
Giampiero Marra ()
Additional contact information
Karol Wyszynski: University College London
Giampiero Marra: University College London
Computational Statistics, 2018, vol. 33, issue 3, No 14, 1385-1412
Abstract:
Abstract We provide a detailed hands-on tutorial for the R package SemiParSampleSel (version 1.5). The package implements selection models for count responses fitted by penalized maximum likelihood estimation. The approach can deal with non-random sample selection, flexible covariate effects, heterogeneous selection mechanisms and varying distributional parameters. We provide an overview of the theoretical background and then demonstrate how SemiParSampleSel can be used to fit interpretable models of different complexity. We use data from the German Socio-Economic Panel survey (SOEP v28, 2012. doi: 10.5684/soep.v28 ) throughout the tutorial.
Keywords: Copula; Non-random sample selection; Penalized regression spline; Selection bias; Count response; Tutorial (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-017-0762-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:33:y:2018:i:3:d:10.1007_s00180-017-0762-y
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-017-0762-y
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().