A fast imputation algorithm in quantile regression
Hao Cheng () and
Ying Wei ()
Additional contact information
Hao Cheng: China Association for Science and Technology
Ying Wei: Columbia University
Computational Statistics, 2018, vol. 33, issue 4, No 2, 1589-1603
Abstract:
Abstract In many applications, some covariates could be missing for various reasons. Regression quantiles could be either biased or under-powered when ignoring the missing data. Multiple imputation and EM-based augment approach have been proposed to fully utilize the data with missing covariates for quantile regression. Both methods however are computationally expensive. We propose a fast imputation algorithm (FI) to handle the missing covariates in quantile regression, which is an extension of the fractional imputation in likelihood based regressions. FI and modified imputation algorithms (FIIPW and MIIPW) are compared to existing MI and IPW approaches in the simulation studies, and applied to part of of the National Collaborative Perinatal Project study.
Keywords: Missing data; Inverse probability weighting; Quantile regression; Imputation methods (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-018-0813-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:33:y:2018:i:4:d:10.1007_s00180-018-0813-z
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-018-0813-z
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().