EconPapers    
Economics at your fingertips  
 

Bayesian model-based clustering for longitudinal ordinal data

Roy Costilla (), Ivy Liu, Richard Arnold and Daniel Fernández
Additional contact information
Roy Costilla: The University of Queensland
Ivy Liu: Victoria University of Wellington
Richard Arnold: Victoria University of Wellington
Daniel Fernández: Victoria University of Wellington

Computational Statistics, 2019, vol. 34, issue 3, No 5, 1015-1038

Abstract: Abstract Traditional cluster analysis methods used in ordinal data, for instance k-means and hierarchical clustering, are mostly heuristic and lack statistical inference tools to compare among competing models. To address this we propose a latent transitional model, a finite mixture model that includes both observed and latent covariates and apply it for the first time to the case of longitudinal ordinal data. This model-based clustering model is an extension of the proportional odds model and includes a first-order transitional term, occasion effects and interactions which provide flexible ways to capture different time patterns by cluster as well as time-heterogeneous transitions. We estimate model parameters within a Bayesian setting using a Markov chain Monte Carlo scheme and block-wise Metropolis–Hastings sampling. We illustrate the model using 2001–2011 self-reported health status (SRHS) from the Household, Income and Labour Dynamics in Australia survey. SRHS is recorded as an ordinal variable with five levels: poor, fair, good, very good and excellent. Using the Widely Applicable Information Criterion for model comparison, we find evidence for six latent groups. Transitions in the original data and the estimated groups are visualized using heatmaps.

Keywords: Classification; Latent transitional models; Correlated data; Finite mixture models; MCMC; Widely Applicable Information Criterion (WAIC) (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-019-00872-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-019-00872-4

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-019-00872-4

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-019-00872-4