A scalable Bayesian nonparametric model for large spatio-temporal data
Zahra Barzegar () and
Firoozeh Rivaz ()
Additional contact information
Zahra Barzegar: Shahid Beheshti University
Firoozeh Rivaz: Shahid Beheshti University
Computational Statistics, 2020, vol. 35, issue 1, No 11, 153-173
Abstract:
Abstract The Bayesian nonparametric (BNP) approach is an effective tool for building flexible spatio-temporal probability models. Despite the flexibility and attractiveness of this approach, the resulting spatio-temporal models become computationally demanding when datasets are large. This paper develops a class of computationally efficient and easy to implement BNP models for large spatio-temporal data. To be more specific, we introduce a random distribution for the spatio-temporal effects based on a stick-breaking construction in which the atoms are modeled in terms of a basis system. In this framework, a low rank basis approximation and a vector autoregressive process are used to model spatial and temporal dependencies, respectively. We demonstrate that the proposed model is an extension of the Gaussian low rank model with similar computational complexity, hence it offers great scalability for large spatio-temporal data. Through a simulation study, we assess the performance of the proposed model. For illustration, we then analyze a set of data comprised of precipitation measurements.
Keywords: Large datasets; Stick-breaking process; Non-stationarity; Non-Gaussianity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-019-00905-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:35:y:2020:i:1:d:10.1007_s00180-019-00905-y
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-019-00905-y
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().