EconPapers    
Economics at your fingertips  
 

Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods

Shen-Ming Lee (), T. Martin Lukusa and Chin-Shang Li ()
Additional contact information
T. Martin Lukusa: Academia Sinica
Chin-Shang Li: The State University of New York, University at Buffalo

Computational Statistics, 2020, vol. 35, issue 2, No 14, 725-754

Abstract: Abstract Zero-inflated Poisson (ZIP) regression is widely applied to model effects of covariates on an outcome count with excess zeros. In some applications, covariates in a ZIP regression model are partially observed. Based on the imputed data generated by applying the multiple imputation (MI) schemes developed by Wang and Chen (Ann Stat 37:490–517, 2009), two methods are proposed to estimate the parameters of a ZIP regression model with covariates missing at random. One, proposed by Rubin (in: Proceedings of the survey research methods section of the American Statistical Association, 1978), consists of obtaining a unified estimate as the average of estimates from all imputed datasets. The other, proposed by Fay (J Am Stat Assoc 91:490–498, 1996), consists of averaging the estimating scores from all imputed data sets to solve the imputed estimating equation. Moreover, it is shown that the two proposed estimation methods are asymptotically equivalent to the semiparametric inverse probability weighting method. A modified formula is proposed to estimate the variances of the MI estimators. An extensive simulation study is conducted to investigate the performance of the estimation methods. The practicality of the methodology is illustrated with a dataset of motorcycle survey of traffic regulations.

Keywords: Zero-inflated Poisson regression; Nonparametric multiple imputation; Inverse probability weighting (IPW); Missing at random; Count data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-019-00930-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:35:y:2020:i:2:d:10.1007_s00180-019-00930-x

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-019-00930-x

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:35:y:2020:i:2:d:10.1007_s00180-019-00930-x