Unconstrained representation of orthogonal matrices with application to common principal components
Luca Bagnato () and
Antonio Punzo
Additional contact information
Luca Bagnato: Università Cattolica del Sacro Cuore
Antonio Punzo: Università di Catania
Computational Statistics, 2021, vol. 36, issue 2, No 17, 1177-1195
Abstract:
Abstract Many statistical problems involve the estimation of a $$\left( d\times d\right) $$ d × d orthogonal matrix $$\varvec{Q}$$ Q . Such an estimation is often challenging due to the orthonormality constraints on $$\varvec{Q}$$ Q . To cope with this problem, we use the well-known PLU decomposition, which factorizes any invertible $$\left( d\times d\right) $$ d × d matrix as the product of a $$\left( d\times d\right) $$ d × d permutation matrix $$\varvec{P}$$ P , a $$\left( d\times d\right) $$ d × d unit lower triangular matrix $$\varvec{L}$$ L , and a $$\left( d\times d\right) $$ d × d upper triangular matrix $$\varvec{U}$$ U . Thanks to the QR decomposition, we find the formulation of $$\varvec{U}$$ U when the PLU decomposition is applied to $$\varvec{Q}$$ Q . We call the result as PLR decomposition; it produces a one-to-one correspondence between $$\varvec{Q}$$ Q and the $$d\left( d-1\right) /2$$ d d - 1 / 2 entries below the diagonal of $$\varvec{L}$$ L , which are advantageously unconstrained real values. Thus, once the decomposition is applied, regardless of the objective function under consideration, we can use any classical unconstrained optimization method to find the minimum (or maximum) of the objective function with respect to $$\varvec{L}$$ L . For illustrative purposes, we apply the PLR decomposition in common principle components analysis (CPCA) for the maximum likelihood estimation of the common orthogonal matrix when a multivariate leptokurtic-normal distribution is assumed in each group. Compared to the commonly used normal distribution, the leptokurtic-normal has an additional parameter governing the excess kurtosis; this makes the estimation of $$\varvec{Q}$$ Q in CPCA more robust against mild outliers. The usefulness of the PLR decomposition in leptokurtic-normal CPCA is illustrated by two biometric data analyses.
Keywords: Orthogonal matrix; LU decomposition; QR decomposition; Common principal components; FG algorithm; Leptokurtic-normal distribution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01041-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-01041-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-020-01041-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().