EconPapers    
Economics at your fingertips  
 

A simple portmanteau test with data-driven truncation point

Roberto Baragona (), Francesco Battaglia () and Domenico Cucina ()
Additional contact information
Roberto Baragona: University La Sapienza
Francesco Battaglia: University La Sapienza
Domenico Cucina: University of Roma Tre

Computational Statistics, 2024, vol. 39, issue 2, No 14, 733-749

Abstract: Abstract Time series forecasting is an important application of many statistical methods. When it is appropriate to assume that the data may be projected towards the future based on the past history of the dataset, a preliminary examination is usually required to ensure that the data sequence is autocorrelated. This is a quite obvious assumption that has to be made and can be the object of a formal test of hypotheses. The most widely used test is the portmanteau test, i.e., a sum of the squared standardized autocorrelations up to an appropriate maximum lag (the truncation point). The choice of the truncation point is not obvious and may be data-driven exploiting supplementary information, e.g. the largest autocorrelation and the lag where such maximum is found. In this paper, we propose a portmanteau test with a truncation point equal to the lag of the largest (absolute value) estimated autocorrelation. Theoretical and simulation-based comparisons based on size and power are performed with competing portmanteau tests, and encouraging results are obtained.

Keywords: White noise test; Maximum autocorrelation; Information criteria; Time series (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-022-01320-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01320-6

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-022-01320-6

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01320-6