Large-scale dependent multiple testing via hidden semi-Markov models
Jiangzhou Wang () and
Pengfei Wang ()
Additional contact information
Jiangzhou Wang: Shenzhen University
Pengfei Wang: Dongbei University of Finance and Economics
Computational Statistics, 2024, vol. 39, issue 3, No 2, 1093-1126
Abstract:
Abstract Large-scale multiple testing is common in the statistical analysis of high-dimensional data. Conventional multiple testing procedures usually implicitly assumed that the tests are independent. However, this assumption is rarely established in many practical applications, particularly in “high-throughput” data analysis. Incorporating dependence structure information among tests can improve statistical power and interpretability of discoveries. In this paper, we propose a new large-scale dependent multiple testing procedure based on the hidden semi-Markov model (HSMM), which characterizes local correlations among tests using a semi-Markov process instead of a first-order Markov chain. Our novel approach allows for the number of consecutive null hypotheses to follow any reasonable distribution, enabling a more accurate description of complex local correlations. We show that the proposed procedure minimizes the marginal false non-discovery rate (mFNR) at the same marginal false discovery rate (mFDR) level. To reduce the computational complexity of the HSMM, we make use of the hidden Markov model (HMM) with an expanded state space to approximate it. We provide a forward-backward algorithm and an expectation-maximization (EM) algorithm for implementing the proposed procedure. Finally, we demonstrate the superior performance of the SMLIS procedure through extensive simulations and a real data analysis.
Keywords: FDR; Hidden semi-Markov model; Multiple testing (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-023-01367-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01367-z
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-023-01367-z
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().