Variable selection for multivariate functional data via conditional correlation learning
Keyao Wang,
Huiwen Wang,
Shanshan Wang () and
Lihong Wang
Additional contact information
Keyao Wang: Beihang University
Huiwen Wang: Beihang University
Shanshan Wang: Beihang University
Lihong Wang: National Computer Network Emergency Response Technical Team/Coordination Center of China
Computational Statistics, 2024, vol. 39, issue 4, No 25, 2375-2412
Abstract:
Abstract Variable selection involves selecting truly important predictors from p-dimensional multivariate functional predictors in functional predictive models. In this paper, a variable selection method is designed for scalar-on-function predictions entangled with nonlinear joint associations among scalar response and multiple functional predictors. First, a nonparametric functional nonlinear conditional correlation coefficient, namely, the FunNCC coefficient, is proposed to measure complex dependencies, including the nonmonotonic marginal dependence, along with the conditional associations of redundancy, complement, and interaction. Then, a model-free feature ordering and selection method is designed, where the FunNCC is utilized to rank relevance, enabling the selection of a subset of predictors with the strongest joint dependence. Since this method allows for quantitatively evaluating the contributions of predictors in explaining responses, it achieves moderate model interpretability. Finally, extensive simulation studies and two real-data cases involving air pollution regression and hand gesture recognition are conducted to evaluate the finite sample performance of the proposed method, and the results show that the proposed FunNCC and variable selection methods outperform state-of-the-art baselines.
Keywords: Functional data; Conditional dependence; Variable selection; Nonlinear correlation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-024-01489-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-024-01489-y
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-024-01489-y
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().