Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review
Yunhan Huang () and
Quanyan Zhu ()
Additional contact information
Yunhan Huang: New York University
Quanyan Zhu: New York University
Dynamic Games and Applications, 2022, vol. 12, issue 1, No 2, 7-48
Abstract:
Abstract This review presents and reviews various solved and open problems in developing, analyzing, and mitigating epidemic spreading processes under human decision-making. We provide a review of a range of epidemic models and explain the pros and cons of different epidemic models. We exhibit the art of coupling between epidemic models and decision models in the existing literature. More specifically, we provide answers to fundamental questions in human decision-making amid epidemics, including what interventions to take to combat the disease, who are decision-makers, and when and how to take interventions, and how to make interventions. Among many decision models, game-theoretic models have become increasingly crucial in modeling human responses or behavior amid epidemics in the last decade. In this review, we motivate the game-theoretic approach to human decision-making amid epidemics. This review provides an overview of the existing literature by developing a multi-dimensional taxonomy, which categorizes existing literature based on multiple dimensions, including (1) types of games, such as differential games, stochastic games, evolutionary games, and static games; (2) types of interventions, such as social distancing, vaccination, quarantine, and taking antidotes; (3) the types of decision-makers, such as individuals, adversaries, and central authorities at different hierarchical levels. A fine-grained dynamic game framework is proposed to capture the essence of game-theoretic decision-making amid epidemics. We showcase three representative frameworks with unique ways of integrating game-theoretic decision-making into the epidemic models from a vast body of literature. Each of the three frameworks has their unique way of modeling and analyzing and develops results from different angles. In the end, we identify several main open problems and research gaps left to be addressed and filled.
Keywords: Dynamic games; Stochastic games; Infectious diseases; Epidemic spreading; Human-in-the-loop systems; COVID-19 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13235-022-00428-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:dyngam:v:12:y:2022:i:1:d:10.1007_s13235-022-00428-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/13235
DOI: 10.1007/s13235-022-00428-0
Access Statistics for this article
Dynamic Games and Applications is currently edited by Georges Zaccour
More articles in Dynamic Games and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().