Improving sparsity and new user problems in collaborative filtering by clustering the personality factors
Zahra Yusefi Hafshejani,
Marjan Kaedi () and
Afsaneh Fatemi
Additional contact information
Zahra Yusefi Hafshejani: University of Isfahan
Marjan Kaedi: University of Isfahan
Afsaneh Fatemi: University of Isfahan
Electronic Commerce Research, 2018, vol. 18, issue 4, No 7, 813-836
Abstract:
Abstract In collaborative filtering recommender systems, items recommended to an active user are selected based on the interests of users similar to him/her. Collaborative filtering systems suffer from the ‘sparsity’ and ‘new user’ problems. The former refers to the insufficiency of data about users’ preferences and the latter addresses the lack of enough information about the new-coming user. Clustering users is an effective way to improve the performance of collaborative filtering systems in facing the aforementioned problems. In previous studies, users were clustered based on characteristics such as ratings given by them as well as their age, gender, occupation, and geographical location. On the other hand, studies show that there is a significant relationship between users’ personality traits and their interests. To alleviate the sparsity and new user problems, this paper presents a new collaborative filtering system in which users are clustered based on their ‘personality traits’. In the proposed method, the personality of each user is described according to the big-5 personality model and users with similar personality are placed in the same cluster using K-means algorithm. The unknown ratings of the sparse user-item matrix are then estimated based on the clustered users, and recommendations are found for a new user according to a user-based approach which relays on the interests of the users with similar personality to him/her. In addition, for an existing user in the system, recommendations are offered in an item-based approach in which the similarity of items is estimated based on the ratings of users similar to him/her in personality. The proposed method is compared to some former collaborative filtering systems. The results demonstrate that in facing the data sparsity and new user problems, this method reduces the mean absolute error and improves the precision of the recommendations.
Keywords: Recommender systems; Collaborative filtering; User’s personality; Clustering (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10660-018-9287-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:elcore:v:18:y:2018:i:4:d:10.1007_s10660-018-9287-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10660
DOI: 10.1007/s10660-018-9287-x
Access Statistics for this article
Electronic Commerce Research is currently edited by James Westland
More articles in Electronic Commerce Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().