Box-office forecasting in Korea using search trend data: a modified generalized Bass diffusion model
Daekook Kang ()
Additional contact information
Daekook Kang: Inje University
Electronic Commerce Research, 2021, vol. 21, issue 1, No 2, 72 pages
Abstract:
Abstract This study aimed to develop a new diffusion model for box-office forecasting by modifying the generalized Bass diffusion model with incorporation of search trend data and historical movie-audience data. To that end, first, movie-audience data (i.e., the number of moviegoers) and NAVER search trend data for each of the top 30 movies released in Korea in 2018 were collected by day. Then, the modified generalized Bass diffusion model, newly proposed in this paper, was applied in order to estimate the diffusion parameters. The results of our empirical case study on the Korean film market show that NAVER search trend data plays an important role in box-office forecasting after a movie is released. This study contributes to the extant literature by proposing a new diffusion model, which is a novel online big-data-driven methodology of box-office forecasting. In addition, comparison analysis with two other representative diffusion models was conducted, and the proposed model showed superior prediction power.
Keywords: Box-office forecasting; Modified generalized Bass diffusion model; Search trend data; Korean film market; NAVER search trend (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10660-020-09456-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:elcore:v:21:y:2021:i:1:d:10.1007_s10660-020-09456-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10660
DOI: 10.1007/s10660-020-09456-7
Access Statistics for this article
Electronic Commerce Research is currently edited by James Westland
More articles in Electronic Commerce Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().