Market sentiment dispersion and its effects on stock return and volatility
Eric. W. K. See-To () and
Yang Yang
Additional contact information
Eric. W. K. See-To: The Hong Kong Polytechnic University
Yang Yang: The Hong Kong Polytechnic University
Electronic Markets, 2017, vol. 27, issue 3, No 9, 283-296
Abstract:
Abstract Behavioral economics has revealed that investor sentiment can profoundly affect individual behavior and decision-making. Recently, the question is no longer whether investor sentiment affects stock market valuation, but how to directly measure investor sentiment and quantify its effects. Before the era of big data, research uses proxies as a mediator to indirectly measure investor sentiment, which has proved elusive due to insufficient data points. In addition, most of extant sentiment analysis studies focus on institutional investors instead of individual investors. This is despite the fact that United States individual investors have been holding around 50% of the stock market in direct stock investments. In order to overcome difficulties in measuring sentiment and endorse the importance of individual investors, we examine the role of individual sentiment dispersion in stock market. In particular, we investigate whether sentiment dispersion contains information about future stock returns and realized volatility. Leveraging on development of big data and recent advances in data and text mining techniques, we capture 1,170,414 data points from Twitter and used a text mining method to extract sentiment and applied both linear regression and Support Vector Regression; found that individual sentiment dispersion contains information about stock realized volatility, and can be used to increase the prediction accuracy. We expect our results contribute to extant theories of electronic market financial behavior by directly measuring the individual sentiment dispersion; raising a new perspective to assess the impact of investor opinion on stock market; and recommending a supplementary investing approach using user-generated content.
Keywords: Investor sentiment; Text mining; Return and volatility predictability (search for similar items in EconPapers)
JEL-codes: C52 C53 C55 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://link.springer.com/10.1007/s12525-017-0254-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:elmark:v:27:y:2017:i:3:d:10.1007_s12525-017-0254-5
Ordering information: This journal article can be ordered from
http://www.springer. ... ystems/journal/12525
DOI: 10.1007/s12525-017-0254-5
Access Statistics for this article
Electronic Markets is currently edited by Rainer Alt and Hans-Dieter Zimmermann
More articles in Electronic Markets from Springer, IIM University of St. Gallen
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().