Hydrogeomorphic variability due to dam constructions and emerging problems: a case study of Damodar River, West Bengal, India
Sandipan Ghosh () and
Sanat Guchhait ()
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2014, vol. 16, issue 3, 769-796
Abstract:
In the first multipurpose river valley planning of India, the vast resources of Damodar River Basin (DRB) (eastern India) are not only to be envisioned in their entirety but also to be developed in a unified manner where the water, land, and people are simultaneously bounded in a seamless web. Four large dams (Konar, Tilaiya, Maithon, and Panchet), Durgapur barrage, and Tenughat reservoir are built to tamp the flood-prone Damodar River using water resource in an integrated method. The functionality of Damodar fluvial system is controlled by dams, barrage, weirs, sluices, embankments, and canals, maintaining a dynamic equilibrium between fluvial processes and anthropogenic processes. Carrying more than 50 years of legacy, the existing drainage and flood control system of Damodar Valley Corporation has aggravated a number of hydrogeomorphic problems especially in lower DRB, viz. siltation of river bed and reservoirs, uncontrolled monsoonal stream flow, declining carrying capacity of lower course, drainage congestion, low-magnitude annual floods, channel shifting, de-functioned canals, decay of paleochannels, decline of ground water level, and less replenishing of soils with fresh silts. The present paper is mainly tried to investigate the pre-dam and post-dam hydrogeomorphic variability in relation to flood risk and drawbacks of Damodar Valley Multipurpose Project. Specifically, the annual peak flow of Damodar shifts from August to September due to dam construction and reservoir storage. Applying the annual flood series of log Pearson type III distribution, we have estimated post-dam 5-year peak discharge of above 5,300 m 3 s −1 and 100-year flood of above 11,000 m 3 s −1 . Due to siltation, the bankfull discharges of sample segments are gradually declined up to 4,011 m 3 s −1 , 2,366 m 3 s −1 , and 1,542 m 3 s −1 , respectively, having recurrence interval of 1.18–3.18 years only. With the regulation of monsoon flow, the standard sinuosity index is gradually increased downstream, having high dominance of hydraulic factors in respect of topographic factors. The upstream section of study area (Rhondia to Paikpara) now shows the dominance of aggradational landforms, braiding, avulsion, high width–depth ratio, breaching of right bank, and valley widening, but downstream of Barsul the phenomena of bank erosion, confined sinuosity, low width–depth ratio, and narrowness are more pronounced. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Dam; Hydrogeomorphology; Flood; Paleochannels; DVC; DRB (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10668-013-9494-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:16:y:2014:i:3:p:769-796
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-013-9494-5
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().