Design of a point-of-care facility for diagnosis of COVID-19 using an off-grid photovoltaic system
Jean Poll Alva-Araujo (),
Oscar Escalante-Maldonado and
Ruddy Alfredo Cabrejos Ramos
Additional contact information
Jean Poll Alva-Araujo: Universidad Nacional Agraria La Molina (UNALM)
Oscar Escalante-Maldonado: Instituto Nacional de Salud (INS)
Ruddy Alfredo Cabrejos Ramos: Universidad Nacional de Ingeniería (UNI)
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2021, vol. 23, issue 8, No 41, 11990-12005
Abstract:
ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is one of the biggest public health issues in the last years. The WHO has reported more than 50,000 confirmed cases and more than 1,000,000 confirmed deaths around the world. Early diagnosis is essential for an appropriate patient care and infection control, so laboratory where molecular tests are held plays a main role. However, laboratory facilities for testing are limited in rural areas. Therefore, it is important to have an effective and practical point-of-care diagnostic system in order to be implemented in developing countries with limited energy access. The objective of this research is to develop an energetically autonomous point-of-care diagnostic system for molecular detection of SARS-CoV-2. This design consists of a retractable system with an area of 15.79 m2 and 3 well-distributed interior areas to guaranty appropriate sample processing. Our point-of-care diagnostic system can be installed at a fixed place (stationary), and it can also be transported to various strategic places (itinerant). The off-grid photovoltaic system feasibility was evaluated using the PVsyst software, presenting an installed capacity of 2.79 KWp, consisting of 4 monocrystalline photovoltaic modules, a 45 A charge regulator and 4 batteries (6 V, 453 Ah). The results showed a performance ratio of 0.522, with higher losses by the full battery (31.77%). This research determines that the proposed point-of-care diagnostic system meets all requirements to set and operate molecular techniques to diagnose infectious diseases, such as COVID-19, with good laboratory conditions, secure and eco-efficient energy, supporting the health scheme to prevent and control the spread of the virus.
Keywords: Point of care; Retractable system; SARS-CoV-2; Photovoltaic system; Energy access (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10668-020-01153-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:23:y:2021:i:8:d:10.1007_s10668-020-01153-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-020-01153-7
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().