Environmental demand effects on the energy generation of Karkheh reservoir: Base and climate change conditions
Elahe Fallah-Mehdipour (),
Omid Bozorg-Haddad () and
Xuefeng Chu ()
Additional contact information
Elahe Fallah-Mehdipour: University of Tehran, National Elites Foundation
Omid Bozorg-Haddad: University of Tehran, National Elites Foundation
Xuefeng Chu: North Dakota State University
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2021, vol. 23, issue 9, No 22, 13165-13181
Abstract:
Abstract Reservoir is a hydraulic structure that regulates river water to supply different sectors’ demands such as municipal, agricultural, and hydropower generation. Sometimes, special attention to meet aforementioned demands causes neglect of the demand and utilities of the river itself as the first main stakeholder. Thus, determination of the environmental demand is one of the effective methods that can provide appropriate potential to achieve river utilities. In this study, two hydrology-based methods, the Tennant method and the range of variability approach (RVA), are used for assessing the environmental demand to maintain the indicators of hydrologic alteration (IHA) within their ranges of natural variations. The Karkheh reservoir was selected for supplying water for downstream demands and hydropower energy generation while considering the environmental demand under the base and climate change conditions. Results showed that the inflow of the Karkheh reservoir increased under the climate change condition, the annual average hydropower energy generated increased, and the average reliabilities of municipal, environmental, and agricultural water supplies determined by the Tennant method for RCPs 2.6, 4.5, and 8.5 increased 2, 12, and 21 percent, respectively, compared to those under the base condition. Thus, there is a good potential to allocate more water to the river as a stakeholder. In addition, the RVA with adaptation to the aquatic ecosystem under the climate change condition was used to determine the environmental demand time series for representative concentration pathways (RCPs). The results demonstrated that although the RVA effectively balanced water usage for the river, the generated hydropower energy for RCPs 2.6, 4.5, and 8.5 decreased 39, 48, and 40 percent, respectively, compare to the correspondence values by the Tennant method. According to the obtained results, the Karkheh reservoir can be operated with consideration of different stakeholders such as environmental organization, hydropower energy consumers, farmers, and drinking water consumers, even under climate change conditions which need more adaptation techniques.
Keywords: Environmental water demand; Energy generation; Climate change; Karkheh reservoir (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10668-020-01204-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:23:y:2021:i:9:d:10.1007_s10668-020-01204-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-020-01204-z
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().