A mathematical modelling framework for quantifying production of biofuel from waste banana
Monzur Alam Imteaz (),
A. B. M. Sharif Hossain () and
Maryam Bayatvarkeshi ()
Additional contact information
Monzur Alam Imteaz: Swinburne University of Technology
A. B. M. Sharif Hossain: University of Malaya
Maryam Bayatvarkeshi: Malayer University
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2022, vol. 24, issue 2, No 21, 2010-2021
Abstract:
Abstract Wide-scale implementations or industrial-scale productions of biofuels from food/fruit waste are insufficient. One of the major reasons of wider implementations is lack of confidence on potential outcomes and subsequent monetary benefit. A mathematical model can provide estimations of potential biofuel generation capability under different input conditions. This paper presents a mathematical modelling framework for the estimation of bioethanol production potential from waste/rotten banana. A simple mathematical formulation comprised of three contributing factors such as shaking hour, temperature and water content is proposed. The factors were derived based on an earlier experimental study on production of bioethanol from waste banana. Results from the proposed mathematical model were compared with the experimental measurements. It is found that the proposed model is capable to estimate potential bioethanol productions from waste banana with very good accuracy achieving a coefficient of correlation of 0.995. Standard errors of the model’s estimations are RMSE = 0.08, MAE = 0.06 and RAE = 0.01. Finally, to facilitate proper estimations of benefit–cost ratio, a mathematical framework is proposed. For industry-scale implementations of biofuel generation, such modelling framework is useful for the decision makers on deciding optimum input parameters through optimised energy consumption, which will ultimately render monetary benefits from such production. Similar mathematical framework can be adopted for such biofuel production from other fruit/food waste.
Keywords: Mathematical model; Banana; Bioethanol; Benefit–cost (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10668-021-01517-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:24:y:2022:i:2:d:10.1007_s10668-021-01517-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-021-01517-7
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().