EconPapers    
Economics at your fingertips  
 

Effect of green innovation efficiency on ecological footprint in 283 Chinese Cities from 2008 to 2018

Haiqian Ke, Shangze Dai and Haichao Yu ()
Additional contact information
Haiqian Ke: Wuhan University
Shangze Dai: Wuhan University
Haichao Yu: Wuhan University

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2022, vol. 24, issue 2, No 55, 2860 pages

Abstract: Abstract The slack-based measure (SBM) model was used in this study to calculate the urban green innovation efficiency (GIE) of Chinese 283 cities during 2008–2018, and the night light data from the defense meteorological satellite program/operational linescan system (DMSP/OLS) were used to characterize the economic development level. On the basis, efforts were made to analyze how ecological footprint is affected by urban GIE at varying economic development levels under the Hansen threshold regression model and reveal the mechanism for ecological footprint to receive influence from urban GIE through the mediation effect model. The results show that: (1) The improvement in the urban GIE of the investigated cities during the study period has a negative double threshold in influencing ecological footprint throughout China. However, with higher economic development level, the inhibitory effect gradually weakens, with the elastic coefficient changing from − 0.3046 and − 0.2132 to − 0.1392 at a 1% significant level. (2) The inhibitory effect on ecological footprint from urban GIE is spatially heterogeneous in Chinese cities. In eastern cities other than central and western cities, urban GIE exerts the strongest inhibitory effect on ecological footprint, with the corresponding coefficient being − 0.3972 at a 1% significant level. Moreover, the inhibition in eastern and central regions is strengthened with higher economic development level. Nevertheless, before crossing the second threshold, the inhibitory effect of urban GIE on ecological footprint in western China does not appear, with the coefficient being 0.1899 and 0.1379, respectively, with at a 1% significant level. (3) Industrial structure and energy structure play a mediating role in the effect of urban GIE on ecological footprint. By contrast, population aggregation and infrastructure are important driving forces for the increase of ecological footprint.

Keywords: Ecological footprint; Green innovation efficiency; Mediating effect; Threshold effect (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://link.springer.com/10.1007/s10668-021-01556-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:24:y:2022:i:2:d:10.1007_s10668-021-01556-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-021-01556-0

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:endesu:v:24:y:2022:i:2:d:10.1007_s10668-021-01556-0