Thermodynamic modeling of a power and hydrogen generation system driven by municipal solid waste gasification
Amirhamzeh Farajollahi (),
Seyed Amirhossein Hejazirad () and
Mohsen Rostami ()
Additional contact information
Amirhamzeh Farajollahi: Imam Ali University
Seyed Amirhossein Hejazirad: Babol Noshirvani University of Technology
Mohsen Rostami: Imam Ali University
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2022, vol. 24, issue 4, No 61, 5887-5916
Abstract:
Abstract Cogeneration systems for simultaneous supply of power and hydrogen have been studied extensively because of their great potentials. Accordingly, in the present study, an innovative cogeneration system consisting of a gas turbine, a gasifier, a transcritical Rankine cycle, and a proton exchange membrane electrolyzer is proposed. The system operates on municipal solid waste (MSW) with constant power output. The proposed cogeneration system is simulated under steady-state condition using Engineering Equation Solver (EES) software, and its performance is evaluated from the first and second laws of thermodynamics. The proposed system produced 3.92 MW power and 608.8 m3/h hydrogen under biomass feed of 1.155 kg/s. Under this design condition, the energy utilization factor (EUF), the total exergy efficiency, and the overall exergy destruction rate are calculated 34.71%, 29.44%, and 11,854 kW, respectively. There components of gasifier, gas turbine, and combustion chamber were introduced for owning the highest exergy destruction rate. A comprehensive parametric study was carried out, and it was concluded that the exergy efficiency of condenser has the lowest value among all components. Also, results indicate that the EUF and the total exergy efficiency can be increased by increasing the inlet temperature of the gas turbine or by decreasing the maximum pressure of the transcritical CO2 cycle. In conclusion, the proposed biomass-driven cogeneration system can produce clean electricity and hydrogen by consuming CO2. The strengths of this system are consumption of municipal waste as the main fuel, simplicity in design, as well as high productivity of hydrogen gas. Graphic abstract
Keywords: Energy and exergy analysis; MSW gasification; Hydrogen production; Gas turbine; Transcritical Rankine cycle (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10668-021-01690-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01690-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-021-01690-9
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().