EconPapers    
Economics at your fingertips  
 

Designing an optimal multi-objective model for a sustainable closed-loop supply chain: a case study of pomegranate in Iran

Ansar Gholipour (), Ahmad Sadegheih (), Ali Mostafaeipour () and Mohammad Bagher Fakhrzad ()
Additional contact information
Ansar Gholipour: Yazd University
Ahmad Sadegheih: Yazd University
Ali Mostafaeipour: Yazd University
Mohammad Bagher Fakhrzad: Yazd University

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2024, vol. 26, issue 2, No 47, 3993-4027

Abstract: Abstract The competitive environment in the global market makes most countries look for better ways to solve their problems. Food waste is the largest concern facing the food security of the world. Not paying attention to process of pomegranate wastes, such as separating the peel from the other parts and ignoring the cost of using artificial intelligence for pest control in gardens and the cost of maintaining the processed products are the gaps of previous researches. To cope with this challenge, recent studies have presented sustainable closed-loop supply chains (SCLSCs) as a strategic approach and a competitive advantage. The present study distinguishes itself from other studies by using the artificial intelligence technology in a supply chain along with the reverse logistics section, i.e., waste recycling. This paper proposes a design for a CLSC pomegranates. The corresponding logistics network is designed for several periods and covers manufacturers, distribution centers, customers, factories, recycling centers (compost centers), and compost end user (compost markets). Using reverse logistics, the wasted pomegranates are also converted into recycled products including ethanol, as an automotive fuel and a renewable energy, and a type of compost processed as an organic fertilizer. The goal of proposed model is to minimize the costs of supply chains, reduce the supply risks involved, and increase the profits for gardeners and investors in the public and non-profit agriculture sectors in Iran. The first pareto solution is 1,869,908.962, 2172.638 and 65.926, and the CPU time is 412 Ms. The results show a rise in the maximum supply risk occurs in the total cost and risk but a reduction in the accountability of the network and also an increase in the disruption period findings in increased total cost and risk of the network, while it first increases and then decreases the accountability.

Keywords: Supply chain; Closed loop; Artificial intelligence; Pomegranate waste; Risk (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10668-022-02868-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:26:y:2024:i:2:d:10.1007_s10668-022-02868-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-022-02868-5

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:endesu:v:26:y:2024:i:2:d:10.1007_s10668-022-02868-5