EconPapers    
Economics at your fingertips  
 

Symmetric Hubbard systems with superconducting magnetic response

A. Callegari, M. Cini (), E. Perfetto and G. Stefanucci

The European Physical Journal B: Condensed Matter and Complex Systems, 2003, vol. 34, issue 4, 455-466

Abstract: In purely repulsive, C 4v -symmetric Hubbard clusters a correlation effect produces an effective two-body attraction and pairing; the key ingredient is the availability of W=0 pairs, that is, two-body solutions of appropriate symmetry. We study the tunneling of bound pairs in rings of 5-site units connected by weak intercell links; each unit has the topology of a CuO 4 cluster and a repulsive interaction is included on every site. Further, we test the superconducting nature of the response of this model to a threading magnetic field. We present a detailed numerical study of the two-unit ring filled with 6 particles and the three-unit ring with 8 particles; in both cases a lower filling yields normal behavior. In previous studies on 1d Hubbard chains, level crossings were reported (half-integer or fractional Aharonov-Bohm effect) which however cannot be due to superconducting pairs. In contrast, the nontrivial basis of clusters carrying W=0 pairs leads to genuine Superconducting Flux Quantization (SFQ). The data are understood in terms of a cell-perturbation theory scheme which is very accurate for weak links. This low-energy approach leads to an effective hard core boson Hamiltonian which naturally describes itinerant pairs and SFQ in mesoscopic rings. For the numerical calculations, we take advantage of a recently proposed exact diagonalization technique which can be generally applied to many-fermion problems and drastically reduces the size of the matrices to be handled. Copyright Springer-Verlag Berlin/Heidelberg 2003

Date: 2003
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2003-00244-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:34:y:2003:i:4:p:455-466

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2003-00244-x

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:34:y:2003:i:4:p:455-466